7. Proton Competition and Keq

a) Question to Consider for any Acid and Base Equilibrium:

"Which side of the equilibrium is favored?"

(i.e.: which side, product or reactant, has a greater [])

(i.e.: if there are two acids in an equilibrium, which acid donates the proton better?)

$$CN^{-} + H_2CO_3$$
 HCN + HCO₃

b) Proton Competition (Method 1)

$$CN^{-} + H_2CO_3$$
 CB CA CA CB CA CB

- i) The two acids are: H₂CO₃ and HCN
- ii) The stronger acid will be a better proton donor:

$$H_2CO_3$$
 Ka = 4.3 x 10^{-7} \leftarrow better H⁺ donor!
 HCN Ka = 4.9 x 10^{-10}

iii) Therefore, the forward reaction is favored because H₂CO₃ is more successful at making its products. Thus, the **product side of the equilibrium is favored**.

c) Keq (Method 2)

i) Keq for an acid-base equilibrium can have the form:

$$Keq = Ka(reactant acid)$$
 $Ka(product acid)$

(if desired, see p.131 for how this formula is derived)

ii) Keq =
$$\frac{\text{Ka of H}_2\text{CO}_3}{\text{Ka of HCN}} = \frac{4.3 \times 10^{-7}}{4.9 \times 10^{-10}} = 880$$

iii) Large Keq (Keq > 1) means the **product side is favored**.

d) Examples

- i) When NO₂ and HC₂O₄ are mixed:
- a) What is the Bronsted-Lowry equilibrium?

$$NO_2^- + HC_2O_4^- \longrightarrow HNO_2 + C_2O_4^-$$

b) Does equilibrium favor products or reactants?

Method 1

Method 2

Compare HC₂O₄ to HNO₂

$$\text{Keq} = \frac{\text{Ka(HC}_2\text{O}_4^-)}{\text{Ka(HNO}_2)} = \frac{6.4 \times 10^{-5}}{4.6 \times 10^{-4}} = 0.14$$

HNO₂ is stronger, so reactants are favored.

Keq < 1 so reactants are favored.

- ii) When HSO₃ and H₂PO₄ are mixed:
- a) What is the Bronsted-Lowry equilibrium?

$$HSO_3^- + H_2PO_4^- \longrightarrow SO_3^{-2} + H_3PO_4$$

(Note: it is not $HSO_3^- + H_2PO_4^- \longrightarrow H_2SO_3^- + HPO_4^{-2}$ because between the two reactants, HSO_3^- is the stronger acid so HSO_3^- donates the proton)

b) Does equilibrium favor products or reactants?

Method 1

Method 2

Compare HSO₃⁻ to H₃PO₄

$$\text{Keq} = \frac{\text{Ka(HSO}_3^{-})}{\text{Ka(H}_3\text{PO}_4)} = \frac{1.0 \times 10^{-7}}{7.5 \times 10^{-3}} = 1.3 \times 10^{-5}$$

H₃PO₄ is stronger, so reactants are favored.

Keq < 1 so reactants are favored.

Do Questions: #38-46 page 133