8. pH, pOH and pK Values

a) The pH Scale

i) A logarithmic scale showing strength of acids and bases.

ii) Every decrease in pH of 1 = Increase in $[H_3O^+]$ by 10

b) What is pH?

- i) Measure of [H₃O⁺] present in a solution
- ii) Solution is acidic when pH less than 7

iii)
$$pH = -log[H_3O^+]$$

iv) What is pH when the $[H_3O^+] = 1.2 \times 10^{-3} \text{ M}$?

$$pH = -log(1.2 \times 10^{-3}) = 2.92$$

v) What is pH when the $[H_3O^+] = 4.8 \times 10^{-8} \text{ M}$?

$$pH = -log(4.8 \times 10^{-8}) = 7.32$$

vi) What is the $[H_3O^+]$ when the pH is 2.55?

$$[H_3O^+] = 10^{-2.55}$$
 or $[H_3O^+] = antilog(-2.55) = 2.8 \times 10^{-3} M$

vii) What is the $[H_3O^+]$ when the pH is 9.70?

$$[H_3O^+] = 10^{-9.70} = 2.0 \times 10^{-10} M$$

c) What is pOH?

- i) Measure of [OH] present in a solution
- ii) Solution is basic when pOH less than 7 (pH greater than 7)
- iii) pOH = -log[OH]
- iv) What is pOH when the $[OH] = 1.5 \times 10^{-1} M$?

$$pOH = -log(1.5 \times 10^{-1}) = 0.82$$

v) What is pOH when the $[OH^{-}] = 4.4 \times 10^{-4} M$?

$$pOH = -log(4.4 \times 10^{-4}) = 3.36$$

vi) What is the [OH] when the pOH is 12.65?

$$[OH^{-}] = 10^{-12.65} = 2.2 \times 10^{-13} M$$

vii) What is the [OH] when the pOH is 1.70?

$$[OH^{-}] = 10^{-1.70} = 2.0 \times 10^{-2} M$$

d) Relationship Between pH and pOH

- i) pH + pOH = 14
- ii) What is the pH of a solution if the pOH is 10.2? pH = 14 10.2 = 3.8
- iii) What is the [OH] if the pH is 3.25?

$$pOH = 14 - 3.25 = 10.75$$
 $[OH^{-}] = 10^{-10.75} = 1.8 \times 10^{-11} M$

iv) What is the pOH if the $[H_3O^+] = 1.7 \times 10^{-4} \text{ M}$?

$$pH = -log(1.7 \times 10^{-4}) = 3.78 \quad pOH = 14 - 3.78 = 10.22$$

v) What is the $[H_3O^+]$ if the $[OH^-] = 3.50 \times 10^{-5} M$

pOH =
$$-\log(3.50 \times 10^{-5}) = 4.456$$
 [H₃O⁺][OH⁻] = Kw
pH = $14 - 4.456 = 9.544$ or [H₃O⁺] = $\frac{1.00 \times 10^{-14}}{3.50 \times 10^{-5}} = 2.86 \times 10^{-10} \text{ M}$
[H₃O⁺] = $10^{-9.544} = 2.86 \times 10^{-10} \text{ M}$

e) pK Values

- i) pK values are just for convenience!
- ii) Observe the Pattern!

$$pH = -log[H3O+]$$

$$6 = -\log[1.00 \times 10^{-6}]$$

$$pKw = -log[Kw]$$

$$14 = -\log[1.00 \times 10^{-14}]$$

ii)
$$pKw = 14 (pH + pOH = 14 \text{ or } pH + pOH = pKw)$$

iii) Observe the Pattern!

$$pKa = -log[Ka]$$

$$2.12 = -\log[7.5 \times 10^{-3}]$$

$$pKb = -log[Kb]$$

$$4.74 = -\log[1.8 \times 10^{-5}]$$

iv)
$$pKa + pKb = pKw$$

f) Significant Figures

- i) In a pH (or pOH) value, only the numbers after the decimal are significant
- ii) Example:

$$pH = 2.465$$
 has 3 sig. figs. The "2" give the power of 10....not significant.

iii) Example:

$$pH = 10.25$$
 has 2 sig. figs.

iv) Example: $[H_3O^+] = 1.24 \times 10^{-3} \text{ M}$. What is pH?

$$pH = -log(1.24 \times 10^{-3}) = 2.907$$

v) Example: $[H_3O^+] = 1.762 \times 10^{-6} M$. What is pH?

$$pH = -log(1.762 \times 10^{-6}) = 5.7540$$

