11. Acid/Base Titration – The Basics (\V. \6)

a) The Technique

- i) The Purpose to find out concentration of an unknown acid or base.
- ii) Titration means to slowly and accurately add known [acid] to an unknown [base] (or vice versa) using a buret, until base is exactly neutralized ("equivalence point").
- iii) Equivalence Point when proportion of acid = proportion of base described by the reaction.

Example: NaOH + HCl
$$\rightarrow$$
 NaCl + H₂O

:

1 mol base = 1 mol acid at equivalence point

Example:
$$3NaOH + H_3PO_4 \rightarrow Na_3PO_4 + 3H_2O$$

3 : 1

3 mol base = 1 mol acid at equivalence point

a) Strong Acid and Strong Base

i) Example: We have 150 mL of NaOH at an unknown concentration. 75 mL of 0.300 M HCl must be added to reach the equivalence point. What is [NaOH]?

 $HCl + NaOH \rightarrow H_2O + NaCl$

Moles $HCl = M \times L = (0.300 \text{ M})(0.075 \text{ L}) = 0.0225 \text{ moles}$

At equiv. point: moles HCl = moles NaOH = 0.0225 moles

[NaOH] = 0.0225 mol / 0.150 L = 0.150 M

ii) Example: 300 mL of unknown [H₂SO₄] is titrated with 600 mL of 0.400 M KOH. What is the [H₂SO₄]?

 $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$

Moles $KOH = M \times L = (0.400 \text{ M})(0.6\text{L}) = 0.24 \text{ moles}$

At equiv. point: 1 mole $H_2SO_4 = 2$ mole KOH

0.24 moles KOH x $\frac{1 \text{ mol H}_2\text{SO}_4}{2 \text{ mol KOH}}$ = 0.12 moles H₂SO₄

 $[H_2SO_4] = 0.12 \text{ moles / } 0.3 \text{ L} = 0.4 \text{ M}$

c) Accuracy

i) Volume

- ullet all titrations are repeated until two volumes are within $\pm~0.1~\text{mL}$
- discard results from any titration that is outside this range
- use average of best results in calculations

Example: Volume of HCl added

1st titration 41.75 mI

2nd titration

41.32 mL

3rd titration

11.34 mL

Thus, volume HCl added = (41.32 + 41.34)/2 = 41.33 mL

ii) Standard Solutions

What is it?

A solution with a very accurately known concentration

How do we make one?

① Use a very pure (99.9%) substance and dissolve an accurate mass in water. Called a **Primary Standard**

Acidic Primary Standard

Basic Primary Standard

oxalic acid H₂C₂O₄•2H₂O

sodium carbonate Na₂CO₃

② Titrate a solution *with* a primary standard to accurately find the concentration of the solution.

Downs: #1084120 page 162-163; #1214123 page 165

Read p. 154-159, 164-165

#94-107, 121-123