

iv) Titration Curve

The above story can be summarized:

- 1. From 0 mL to ~99 mL, all the H₃O⁺ gets soaked up
- 2. Then, over a very small range in volume (from ~ 99 mL to ~ 101 mL) the [H₃O⁺] spikes.
- 3. After ~ 101 mL, the $[H_3O^+]$ is very high.

The above story can be graphed:

7.0		I
<u>Volume</u>	rs ota	8 8
HCI (mL)	[H₃O [†]]	рН
0	1.00E-14	14
10	1.20E-14	13.92
20	1.40E-14	13.85
30	1.80E-14	13.74
40	2.30E-14	13.64
50	3.00E-14	13.52
60	4.00E-14	13.40
70	5.60E-14	13.25
80	9.10E-14	13.04
90	2.00E-13	12.70
95	3.80E-13	12.42
99	2.00E-12	11.70
99.9	2.00E-11	10.70
99.99	2.00E-10	9.70
100	1.00E-07	7.00
100.01	5.00E-05	4.30
100.1	5.00E-04	3.30
101	5.00E-03	2.30
105	2.40E-02	1.62
110	4.80E-02	1.32
120	5.50E-02	1.26
130	6.00E-02	1.22
140	6.20E-02	1.21
150	6.40E-02	1.19
160	6.60E-02	1.18

(see top of page 168 for a titration curve for a strong base titrating a strong acid)

v) Indicators

- At equivalence point, only a salt and H₂O is present
- \bullet the salt of a strong acid and strong base will dissociate into two spectator ions
- thus, the solution at the equivalence point is **neutral**. pH = 7
- \bullet thus, choose an indicator that will change colour at pH = 7. Has a pKa = 7

Example: $HCl + NaOH \rightarrow NaCl + H_2O$ $Na^+_{(aq)}$ and $Cl^-_{(aq)}$ are neutral. No hydrolysis!

b) Strong Base with Weak Acid

i) Example: 150 mL of unknown [CH₃COOH] is titrated with 220 mL of 0.250 M NaOH to reach the equivalence point. What is the [CH₃COOH]?

Calculation is the same as strong base with strong acid!

$$CH_3COOH + NaOH \rightarrow H_2O + NaCH_3COO$$

Moles NaOH = $M \times L = (0.250 \text{ M})(0.220 \text{ L}) = 0.055 \text{ moles}$

At equiv. point: moles NaOH = moles CH₃COOH = 0.055 moles

 $[CH_3COOH] = 0.055 \text{ mol} / 0.150 L = 0.37 M$

ii) Titration Curve

Volume of base added

iii) Indicators

- At equivalence point, only a salt and H₂O is present
- the salt of a strong base and weak acid will produce one spectator ion and one weak base
- thus the solution at the equivalence point will be basic. pH > 7
- thus, choose an indicator that will change colour around pH 8-10

Example: $CH_3COOH + NaOH \rightarrow H_2O + NaCH_3COO$

 Na^+ is a spectator, but $\mathrm{CH_3COO}^-$ is a weak base in $\mathrm{H_2O}$. (although the equivalence point has been reached, the resulting solution is not neutral!)

c) Strong Acid with Weak Base

i) Example: 240 mL of NH₃ of unknown concentration is titrated to the equivalence point with 180 mL of 0.500 M HCl. What is [NH₃]?

Calculation is the same as strong base with strong acid!

$$HCl + NH_3 \rightarrow NH_4Cl \quad (NH_3 + H_3O^+ \longrightarrow NH_4^+ + H_2O)$$

Moles $HCl = M \times L = (0.500 \text{ M})(0.180 \text{ L}) = 0.090 \text{ moles}$

At equiv. point: moles $HCl = moles NH_3 = 0.090 moles$

 $[NH_3] = 0.090 \text{ mol} / 0.240 \text{ L} = 0.375 \text{ M} \sim 0.38 \text{ M}$

ii) Titration Curve

Volume of acid added

iii) Indicators

- At equivalence point, only a salt and H₂O is present
- the salt of a strong acid and weak base will produce one spectator ion and one weak acid
- thus the solution at the equivalence point will be acidic. pH < 7
- thus, choose an indicator that will change colour around pH 4-6

Example: $HCl + NH_3 \rightarrow NH_4Cl$

 Cl^- is a spectator, but NH_4^+ is a weak acid in H_2O . (although the equivalence point has been reached, the resulting solution is not neutral!)