13. Buffers (\\\ .19)

a) Purpose

prevents a significant change in pH when acid or base is added

No Buffer 0.1 mol HCl added to water pH changes 6 units! (7 to 1) With Buffer
0.1 mol HCl added to water
containing "buffer system"
pH changes only 0.08 units!

b) Acidic Buffer Systems

i) 1 mol CH₃COOH in 1 L water: (buffers against base only)

CH₃COOH + H₂O
$$\longrightarrow$$
 CH₃COO + H₃O⁺
0.98 mol 0.01 mol 0.01 mol

- ① If add OH⁻, the H₃O⁺ present will "mop up" (neutralize) the OH⁻ added. Thus, no net increase in pH.

 The equilibrium will also shift right to replace the H₃O⁺ used to neutralize the OH⁻.
- ② But, if add H₃O⁺, the equilibrium will shift left but will quickly stop as soon as CH₃COO is used up. Thus, the pH will decrease.
- ii) 1 mol CH₃COOH and 1 mol NaCH₃COO in 1 L water: (buffers against acid and base)

$$CH_3COOH + H_2O$$
 $CH_3COO^2 + H_3O^+$

$$1 \text{ mol}$$

$$(\text{from NaCH}_3COO)$$

- ① If add OH, system prevent pH increase as described above.
- ② If add H₃O⁺, there is now plenty of CH₃COO which can react with the H₃O⁺, shift the equilibrium to the left, and prevent a decrease in pH.

iii) Why is it called an "acidic" buffer system?

$$Ka = \underbrace{[CH_3COO^-][H_3O^+]}_{[CH_3COOH]}$$

$$1.8 \times 10^{-5} = 1.0 \text{M} \text{H}_{3} \text{O}^{+}$$
 $1.8 \times 10^{-5} = \text{H}_{3} \text{O}^{+}$ $pH = 4.74$

This is an acidic buffer system because it will maintain pH around 4.74

iv) Example: If we add 0.1 mol HCl to 1L water that contains the above buffer system, what is the change in pH?

$$CH_3COOH + H_2O$$
 $CH_3COO^- + H_3O^+$
1.1 mol 0.9 mol

0.1 mol of CH₃COO reacts with the 0.1 mol H₃O⁺, shifting equilibrium to the left, thus decreasing CH₃COO by 0.1 mol and increasing CH₃COOH by 0.1 mol.

Ka =
$$[CH_3COO^{-}][H_3O^{+}]$$
 1.8 x 10⁻⁵ = $[0.9M][H_3O^{+}]$
 $[CH_3COOH]$ $[1.1M]$
2.2 x 10⁻⁵ = $[H_3O^{+}]$ pH = 4.66 pH change = 4.74 – 4.66 = **0.08**

v) An acidic buffer is made of a weak acid (CH₃COOH) and a salt containing its conjugate base (NaCH₃COO)

c) Basic Buffer Systems

i) 1 mol NH₃ and 1 mol NH₄Cl in 1 L water:

$$NH_3 + H_2O$$
 $NH_4^+ + OH^-$
1 mol
(from NH_4CI)

- \odot If add OH⁻, excess NH₄⁺ mops it up
- ② If add H₃O⁺, OH⁻ mops it up and excess NH₃ shifts right to replace OH⁻

ii) Why is it called a "basic" buffer system?

$$Kb = \underbrace{[NH_4^+][OH^-]}_{[NH_3]}$$

$$1.79 \times 10^{-5} = 1.0M \text{ M} = 1.79 \times 10^{-5} = \text{OH} = 4.74 \text{ pH} = 9.25$$

This is a basic buffer system because it will maintain pH around 9.25

iii) A basic buffer system is made of a weak base (NH₃) and a salt containing its conjugate acid (NH₄Cl).

d) Weak Acid/Base Titrations are Buffers

i) titrations of a weak acid with a strong base sets up a buffer equilibrium system

Halfway to the equivalence point (V $_$) is when we have a buffer because [CH₃COOH] = [CH₃COOT]

ii) titrations of a weak base with a strong acid also sets up a buffer system

Halfway to the equivalence point (V _) is when we have a buffer because $\lceil NH_3 \rceil = \lceil NH_4^+ \rceil$

e) Application

i) The Haemoglobin enzyme in blood works at an optimum pH of 7.4

$$pH > 7.4$$
 O_2 not released

$$pH < 7.4$$
 O_2 not picked up

ii) Blood has a buffer system to prevent drastic pH changes

Two linked
$$CO_2 + H_2O$$
 H_2CO_3 Equilibria: (excess in blood)
$$H_2CO_3 + H_2O$$
 H_3CO_3

$$H_2CO_3 + H_2O$$
 $H_3O^+ +$ HCO₃ (excess in blood)