13. Buffers (\\\ .19) ### a) Purpose prevents a significant change in pH when acid or base is added No Buffer 0.1 mol HCl added to water pH changes 6 units! (7 to 1) With Buffer 0.1 mol HCl added to water containing "buffer system" pH changes only 0.08 units! ### b) Acidic Buffer Systems i) 1 mol CH₃COOH in 1 L water: (buffers against base only) CH₃COOH + H₂O $$\longrightarrow$$ CH₃COO + H₃O⁺ 0.98 mol 0.01 mol 0.01 mol - ① If add OH⁻, the H₃O⁺ present will "mop up" (neutralize) the OH⁻ added. Thus, no net increase in pH. The equilibrium will also shift right to replace the H₃O⁺ used to neutralize the OH⁻. - ② But, if add H₃O⁺, the equilibrium will shift left but will quickly stop as soon as CH₃COO is used up. Thus, the pH will decrease. - ii) 1 mol CH₃COOH and 1 mol NaCH₃COO in 1 L water: (buffers against acid and base) $$CH_3COOH + H_2O$$ $CH_3COO^2 + H_3O^+$ $$1 \text{ mol}$$ $$(\text{from NaCH}_3COO)$$ - ① If add OH, system prevent pH increase as described above. - ② If add H₃O⁺, there is now plenty of CH₃COO which can react with the H₃O⁺, shift the equilibrium to the left, and prevent a decrease in pH. iii) Why is it called an "acidic" buffer system? $$Ka = \underbrace{[CH_3COO^-][H_3O^+]}_{[CH_3COOH]}$$ $$1.8 \times 10^{-5} = 1.0 \text{M} \text{H}_{3} \text{O}^{+}$$ $1.8 \times 10^{-5} = \text{H}_{3} \text{O}^{+}$ $pH = 4.74$ This is an acidic buffer system because it will maintain pH around 4.74 iv) Example: If we add 0.1 mol HCl to 1L water that contains the above buffer system, what is the change in pH? $$CH_3COOH + H_2O$$ $CH_3COO^- + H_3O^+$ 1.1 mol 0.9 mol 0.1 mol of CH₃COO reacts with the 0.1 mol H₃O⁺, shifting equilibrium to the left, thus decreasing CH₃COO by 0.1 mol and increasing CH₃COOH by 0.1 mol. Ka = $$[CH_3COO^{-}][H_3O^{+}]$$ 1.8 x 10⁻⁵ = $[0.9M][H_3O^{+}]$ $[CH_3COOH]$ $[1.1M]$ 2.2 x 10⁻⁵ = $[H_3O^{+}]$ pH = 4.66 pH change = 4.74 – 4.66 = **0.08** v) An acidic buffer is made of a weak acid (CH₃COOH) and a salt containing its conjugate base (NaCH₃COO) ### c) Basic Buffer Systems i) 1 mol NH₃ and 1 mol NH₄Cl in 1 L water: $$NH_3 + H_2O$$ $NH_4^+ + OH^-$ 1 mol (from NH_4CI) - \odot If add OH⁻, excess NH₄⁺ mops it up - ② If add H₃O⁺, OH⁻ mops it up and excess NH₃ shifts right to replace OH⁻ ii) Why is it called a "basic" buffer system? $$Kb = \underbrace{[NH_4^+][OH^-]}_{[NH_3]}$$ $$1.79 \times 10^{-5} = 1.0M \text{ M} = 1.79 \times 10^{-5} = \text{OH} = 4.74 \text{ pH} = 9.25$$ This is a basic buffer system because it will maintain pH around 9.25 iii) A basic buffer system is made of a weak base (NH₃) and a salt containing its conjugate acid (NH₄Cl). # d) Weak Acid/Base Titrations are Buffers i) titrations of a weak acid with a strong base sets up a buffer equilibrium system Halfway to the equivalence point (V $_$) is when we have a buffer because [CH₃COOH] = [CH₃COOT] ii) titrations of a weak base with a strong acid also sets up a buffer system Halfway to the equivalence point (V _) is when we have a buffer because $\lceil NH_3 \rceil = \lceil NH_4^+ \rceil$ # e) Application i) The Haemoglobin enzyme in blood works at an optimum pH of 7.4 $$pH > 7.4$$ O_2 not released $$pH < 7.4$$ O_2 not picked up ii) Blood has a buffer system to prevent drastic pH changes Two linked $$CO_2 + H_2O$$ H_2CO_3 Equilibria: (excess in blood) $$H_2CO_3 + H_2O$$ H_3CO_3 $$H_2CO_3 + H_2O$$ $H_3O^+ +$ HCO₃ (excess in blood)