4. Bronsted – Lowry Theory of Acids and Bases –

• takes equilibrium reactions into account!

a) Acids

i) Proton donors – gives H⁺ to another substance

ii)
$$HCl + H_2O \longrightarrow H_3O^+ + Cl^-$$

- HCl donated *one* proton to H₂O, so it is an acid.
- HCl is a "Monoprotic Acid" (donates one proton).

iii)
$$H_2SO_4 + H_2O \longrightarrow H_3O^+ + HSO_4^-$$

- H₂SO₄ donated a proton to H₂O
- HSO₄ can also donate a proton!

$$HSO_4^- + H_2O \longrightarrow H_3O^+ + SO_4^{-2}$$

• H₂SO₄ is a "<u>Diprotic Acid</u>" (can donate *two* protons total).

iii)
$$H_3PO_4 + H_2O \longrightarrow H_3O^+ + H_2PO_4^-$$

- H₂PO₄ can still donate 2 protons.
- H₃PO₄ is a "<u>Triprotic Acid</u>" (can donate *three* protons total).

b) Bases

i) Proton acceptors – receives an $\boldsymbol{H}^{\!\scriptscriptstyle +}$ from a substance.

ii)
$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$

• NH₃ receives an H⁺ to form NH₄⁺ so it is a base.

Jemo Print HCI overge Nach Nach Nacos

c) Amphiprotic Species

- i) Substances that act as both an acid or a base (depends on the situation).
- ii) Water is a common amphiprotic substance
- iii) Example:

$$HCl + H_2O \longrightarrow H_3O^+ + Cl^-$$

$$NH_3 + H_2O$$
 \longrightarrow $NH_4^+ + OH^-$ acid

- iv) Diprotic and Triprotic Acids that have already lost a proton are also amphiprotic.
- v) Example:

$$HSO_3^- + NH_3 \longrightarrow NH_4^+ + SO_3^{-2}$$
acid

$$HSO_3$$
 + $HC1$ \longrightarrow H_2SO_3 + $C1$

d) Bronsted - Lowry Reactions

- i) all BL reactions have an acid and a base on both sides of the equilibrium!
- ii) Example:

$$NH_3 + H_2O$$
 \longrightarrow $NH_4^+ + OH^-$ base acid

$$NH_3 + H_2O$$
 \longrightarrow $NH_4^+ + OH^-$ acid base

e) Identify the Acid and Base on the Reactant Side of Equilibrium

i)
$$H_2PO_4^- + CO_3^{-2} = HPO_4^{-2} + HCO_3^-$$

ii) SCN + H₂O
$$\Longrightarrow$$
 HSCN + OH

iii)
$$NH_3 + HSO_4$$
 \longrightarrow $NH_4^+ + SO_4^{-2}$

v)
$$NH_2^- + HPO_4^{-2} \longrightarrow NH_3 + PO_4^{-3}$$

f) Identify the Acid and Base on Both Sides of Equilibrium

i)
$$H_2S + HCO_3 + HS^2 + H_2CO_3$$

ii)
$$NO_3^- + H_3O^+ - HNO_3 + H_2O$$

g) Conjugate Pairs

- i) A conjugate pair is the two similar species on either sides of the equilibrium that differ by only one proton.
- ii) Identify the conjugate pairs:

$$H_3PO_4 + NH_3 \longrightarrow H_2PO_4^{-2} + NH_4^+$$

$$HBr + HCO_3$$
 \longrightarrow $H_2CO_3 + Br$

$$H_2O + HSO_3^- + SO_3^{-2}$$

h) Conjugate Acids and Bases

- i) In each conjugate pair, one is the conjugate acid and one is the conjugate base
- ii) Conjugate acid (CA) the one species of the pair that has the extra proton
- iii) Conjugate base (CB) the one species of the pair that has one less proton.
- iv) Identify the CA's and CB's for each equilibrium:

$$H_3PO_4 + NH_3 \longrightarrow H_2PO_4^{-2} + NH_4^+$$
 $CA \quad CB \quad CB \quad CA$

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^ CB \quad CA \quad CB$$

$$H_2O + HCO_3$$
 $H_3O^+ + CO_3^{-2}$ CA CA CB

$$CH_3CH_2NH_2 + H_3O^+$$
 $CH_3CH_2NH_3 + H_2O$ CB CA CB

v) What is the conjugate base of the following species?

$$HNO_2 NO_2$$
 $OH^- O^{-2}$

$$H_2SO_4 \underline{HSO_4}$$

vi) What is the conjugate acid of the following species?

$$HCO_3$$
 H_2CO_3

i) Summary

i) All Bronsted-Lowry reactions have a CA and a CB on each side of the equilibrium.

$$CA_1 + CB_2 \longrightarrow CA_2 + CB_1$$

CA₁ and CB₁ are conjugate pairs

CB₂ and CA₂ are conjugate pairs

ii) Complete the following reactions and identify the CA and CB on both sides of the equilibrium:

$$HF + H_2O \longrightarrow F^- + H_3O^+$$
 $CA \qquad CB \qquad CB \qquad CA$

$$CO_3^{-2} + HPO_4^{-2}$$
 \longrightarrow $HCO_3^{-2} + PO_4^{-3}$ CB CA CB

$$HS^- + NH_4^+ \longrightarrow NH_3 + H_2S$$

 $CB \quad CA \quad CB \quad CA$

Do Questions: #15 page 119; # 16-19 page 121