Period 19 - Quiz on Le Chatelier's Principle - Go over equilibrium expressions worksheet - Mathematical examples ## Example #1 : 2 HCl $$_{(q)}$$ + F_{2 $_{(q)}$} \Leftrightarrow Cl_{2 $_{(q)}$} + 2 HF $_{(q)}$ At a certain temperature, the equilibrium concentrations were found to be as follows: [HCl] = 0.50 M $[F_2]$ = 0.40 M $[Cl_2]$ = 2.0 M [HF] = 0.60 M. From this data, calculate Keq. $$[Cl2][HF]2 (2.0) (0.60)2$$ $$[HCl]2[F2] (0.50)2 (0.40)$$ note: it is acceptable to leave out units for Keq because they don't really mean anything and there is no standard unit for this constant. ## Example #2 : 2 HI $$_{(g)}$$ \Leftrightarrow H_{2 $_{(g)}$} + I_{2 $_{(g)}$} At a certain temperature, $[H_2] = 2.5 \times 10^{-2} \, M$ and $[I_2] = 3.1 \times 10^{-2} \, M$. If Keq is 8.6×10^{-2} , calculate the equilibrium [HI]. Answer #2: $$\text{Keq} = \begin{bmatrix} [H2][I2] \\ ----- \\ [HI]^2 \end{bmatrix} = \begin{bmatrix} [H_2][I_2] \\ ----- \\ [Keq] \end{bmatrix}$$ $$[HI]^{2} = \frac{(2.5 \times 10^{-2})(3.1 \times 10^{-2})}{(8.6 \times 10^{-2})}$$ $$[HI]^2 = 9.0 \times 10^{-3}$$ $$[HI] = 9.5 \times 10^{-2} M$$ note: even though no unit was given for Keq it is understood that there is a unit for concentration - moles per litre or M for short.