

- Return and go over quiz on Le Chatelier's Principle
- Go over Keq worksheet #1 -> (E Table)
- More Mathematical Examples Before and after situations

# Example #4:

$$2 \text{ NOCl } (q) <===> 2 \text{ NO } (q) + \text{Cl2 } (q)$$

Initially 2.00 mol of NOCl was placed in a 1.00~L flask at 462oC and left to reach the equilibrium shown above. When the equilibrium is established, it was found that 0.66~mol of NO were present. Calculate Keq.

### Answer #4:

We can start a table with the initial values given in the question:

| Concentrations | 2NOCl ⇔  | 2NO | + | $Cl_2$ |
|----------------|----------|-----|---|--------|
| Initial        | 2.00     | 0.0 |   | 0.0    |
| Change in      | Addition | +   | + |        |
| Equilibrium    |          |     |   |        |

- NOTES: 1. Because the equilibrium is shifting right, the products will increase and the reactants will decrease, hence the signs and +.
  - 2. Note the coefficients of the equation are translated into factors in the change in concentration. For example, if we are to make 0.5 mol of  $\text{Cl}_2$  we MUST also make 2 times as much NO (from equation).\

Now let's see what other information the question gives us :

It states that we have 0.66 mol of NO at equilibrium. Therefore the  $[NO]_{eq}$  must be 0.66 M.

Since we produced 0.66 mol NO, we must have produced 0.33 mol of  $\text{Cl}_2$  according to the stoichiometry (for every 2 NO molecules produced, 1  $\text{Cl}_2$  is produced). Since we started with 0 mol  $\text{Cl}_2$ , the  $[\text{Cl}_2]_{\text{eq}}$  is 0.33 M

Furthermore, stoichiometrically if we produce 2 NO's we must have used 2NOCl's. Similarly, if we produced 0.66 mol NO we must have used up 0.66 mol NOCl. Therefore [NOCl] = 2.00 - 0.66 = 1.34 M

### Completing this table we get

| Concentrations | 2 NOCl | ⇔ 2NO + | ${\tt Cl_2}$ |
|----------------|--------|---------|--------------|
| Initial        | 2.00   | 0.0     | 0.0          |
| Change in      | -0.66  | +0.66   | +0.33        |
| Equilibrium    | 1.34   | 0.66    | 0.33         |
|                |        |         |              |

# (2)

## Example #6:

$$N_{2~(g)}$$
 +  $O_{2~(g)}$   $\Leftrightarrow$  2  $NO_{(g)}$ 

2.00 mol  $N_2$  and 2.00 mol  $O_2$  are placed in a 2.00 L flask and allowed to come to equilibrium. What is the equilibrium [NO] ? Keq =  $4.51\,\times\,10^{-3}$ 

## Answer #6:

square root both sides

we get

$$6.72 \times 10^{-2} = -----$$
 (1.00-2X)

Algebra :

$$(1.00-2X)(0.0672) = 2X$$
  
 $0.0672 - 0.0672X = 2X$   
 $0.0672 = 2.0672X$   
 $0.0325 = X$ 

Is this what we wanted ?

Go back and look at the table and the question. We wanted [NO]. According to our table, [NO] = 2X therefore [NO] = 2(0.0325) = 0.0650 M

#### Assignment :

- Read section 19-9 LOOK at examples
- Keq Worksheet #2 1-4