7. Electrochemical Cell – Applications (\(\lambda \) (\(\lambda \))

a) Factors Affecting Electrochemical Cells

i) Concentration

- a change means not 1 M (so the "o" is removed from the E° cell)
- apply Le Chatelier's principle:

eg/
$$Ag^{+}$$
 + e- $Ag_{(s)}$ E° cell = +0.80 V if $[Ag^{+}]$ = 1 M

a "+" E cell means the forward reaction (reduction) is favored

$$eg/Ag^{+} + e^{-}$$
 Ag (s) E cell = less than +0.80 V if $[Ag^{+}] = 0.5 M$

lower [Ag⁺] means a shift left, reduction favored less, so lower E cell value.

$$eg/Ag^{+} + e^{-}$$
 Ag (s) E cell = more than +0.80 V if $[Ag^{+}] = 1.5 \text{ M}$

higher [Ag⁺] means a shift right, so reduction favored more, so higher E cell

ii) Surface Area

- what if we use a larger electrode?
- will the E°cell be larger, smaller, the same?
- ① the electrode is a solid.
- ② changing the amount of solid will not affect its concentration
- ③ if concentration is not affected, neither is the ox/red equilibrium
- therefore, the E°cell will be the same!

(Note: the rate at which the cell works (reaction proceeds) will change!)

iii) Multiple Electrodes

- what if we have multiple anodes and multiple cathodes?
- at which electrode will the reactions proceed?
- choose the cathode anode pair that will give the largest E°cell (the half reactions farthest from each other of the table!)
- the other electrodes will be spectators!

Do Questions: #39, 42-45 page 225-226; #47-48 page 228