4. Redox Titrations

Find an unknown concentration by slowly adding a known concentration until the equivalence point.

a) Find Concentration of a Reducing Agent

- i) Procedure: 1. Titrate the reducing agent with KMnO₄ (powerful oxidizing agent)
 - 2. The reducing agent will change MnO₄ into Mn²⁺:

$$MnO_4$$
 + $8H^+$ + $5e_- \rightarrow Mn^{2+}$ + $4H_2O$ purple colourless

- 3. Equivalence point is when you see the first hint of purple in the flask.

 There is no longer any reducing agent left to convert the purple MnO₄ into colourless Mn²⁺
- ii) Calculation Sample (very similar to acid-base titration)

25.00 ml of unknown [Cu⁺] is titrated to equivalence point with 18.73 ml of 0.200 M KMnO₄ solution. What is the [Cu⁺]?

1st write the overall reaction and balance

$$MnO_4^- + 8H^+ + 5e_- \rightarrow Mn^{2+} + 4H_2O$$
 (from above)

$$Cu^+ \rightarrow Cu^{2+} + 1e-$$
 (we know Cu^+ is being oxidized)

$$MnO_4^- + 8H^+ + 5Cu^+ \rightarrow Mn^{2+} + 4H_2O + 5Cu^{2+}$$
 (overall redox)

 2^{nd} Find moles MnO_4^-

moles =
$$M \times L = (0.200 \text{ M})(0.01873 \text{ L}) = 0.003746 \text{ mol MnO}_4$$

3rd Convert to moles Cu⁺

$$0.003746 \text{ moles MnO}_4^- \text{ x} \quad \frac{5 \text{ mol Cu}^+}{1 \text{ mol MnO}_4^-} = 0.01873 \text{ mol Cu}^+$$

$$[Cu^{+}] = \text{mol/L} = 0.01873 \text{ mol} / 0.02500 \text{ L} = 0.749 \text{ M}$$

iii) Calculation Example

25.00 ml of unknown $[Cr^{+2}]$ is titrated to equivalence point with 28.45 ml of 0.150 M KMnO₄ solution. What is the $[Cr^{+2}]$?

1st write the overall reaction and balance

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$
 (from above)

$$Cr^{+2} \rightarrow Cr^{+3} + 1e$$
 (we know Cr^{+2} is being oxidized)

$$MnO_4^- + 8H^+ + 5Cr^{+2} \rightarrow Mn^{2+} + 4H_2O + 5Cr^{+3}$$
 (overall redox)

2nd Find moles MnO₄

moles = M x L =
$$(0.150 \text{ M})(0.02845 \text{ L}) = 0.004268 \text{ mol MnO}_4^{-1}$$

3rd Convert to moles Cr⁺²

$$0.004268 \text{ moles MnO}_4^- \text{ x} \quad \frac{5 \text{ mol Cr}^{+2}}{1 \text{ mol MnO}_4^-} = 0.02134 \text{ mol Cr}^{+2}$$

$$4^{th}$$
 Find $[Cr^{+2}]$

$$[Cr^{+2}] = mol/L = 0.02134 \ mol / 0.02500 \ L = 0.854 \ M$$

b) Find Concentration of an Oxidizing Agent

- i) Procedure: 1. Titrate the oxidizing agent with I-
 - 2. The oxidizing agent will change Γ into I_2 :

$$2I$$
 \rightarrow $I_2 + 2e$ -

- 3. It is difficult to detect the disappearance of I
- 4. We then titrate the I₂ with Na₂S₂O₃

$$2S_2O_3^{-2} + I_2 \rightarrow S_4O_6^{-2} + 2I^{-1}$$

- 5. Use starch as the indicator. Starch is blue is presence of I₂!
- 6. Equivalence point is when you see the blue colour in the flask disappear. There is no longer any I₂ left to "blue" the starch.
- 7. If know moles of S₂O₃⁻², we can find moles of I₂. If know moles of I₂, can find moles of oxidizing agent from balanced redox reaction.

ii) Calculation Sample

A 20.00 ml sample of NaOCl is reacted with NaI according to the reaction:

$$2H^{+} + OCI^{-} + 2I^{-} \rightarrow Cl_{-} + H_{2}O + I_{2}$$

What is the [OCI] if the I₂ produced required 34.77 mL of 0.500 M Na₂S₂O₃ to reach the equivalence point?

 1^{st} Find moles of $S_2O_3^{-2}$

moles = M x L =
$$(0.500 \text{ M})(0.03477 \text{ L}) = 0.01738 \text{ mol } S_2O_3^{-2}$$

$$2^{nd}$$
 Convert to moles I_2 (using $2S_2O_3^{-2} + I_2 \rightarrow S_4O_6^{-2} + 2I$)

$$0.01738 \text{ moles } S_2O_3^{-2} \times \underbrace{1 \text{ mol } I_2}_{2 \text{ mol } S_2O_3^{-2}} = 0.00869 \text{ mol } I_2$$

3rd Conver to moles OCl

$$0.00869 \text{ mol } I_2 \quad x \qquad \underline{1 \text{ mol OCI}}_1 \quad = \quad 0.00869 \text{ mol OCI}_2$$

4th Find [OCl]

$$[OCl^{2}] = mol/L = 0.00869 mol/0.02000 L = 0.434 M$$

iii) Calculation Example

A 15.00 ml sample of NaOCl is reacted with KI according to the reaction: $\frac{1}{2}$

$$2H^+ + OCI^- + 2I^- \rightarrow Cl_- + H_2O + I_2$$

What is the [OCl $^-$] if the I₂ produced required 19.50 mL of 0.240 M Na₂S₂O₃ to reach the equivalence point?

moles
$$S_2O_3^{-2} = M \times L = (0.240 \text{ M})(0.01950 \text{ L}) = 0.00468 \text{ mol } S_2O_3^{-2}$$

0.00468 moles
$$S_2O_3^{-2}$$
 x $\frac{1 \text{ mol } I_2}{2 \text{ mol } S_2O_3^{-2}} = 0.00234 \text{ mol } I_2$

$$0.00234 \text{ mol } I_2 \quad x \quad \underline{1 \text{ mol OCl}}_1 \quad = \quad 0.00234 \text{ mol OCl}^2$$

$$[OCl^{-}] = mol/L = 0.00234 mol/ 0.01500 L = 0.156 M$$

Do Questions: #28-32 page 213-214