# 5. Electrochemical Cell – Qualitative (V/3)



Electrons are exchanged between two connected half-reactions. Movement of electrons is electricity. Generate electricity thru Chemistry!

a) Example How can we harness the electricity from the following redox reaction?

$$2Ag^{+} + Cu_{(s)} \rightarrow 2Ag_{(s)} + Cu^{+2}$$



Reduction:  $Ag^+ + e^- \rightarrow Ag_{(s)}$  Oxidation:  $Cu_{(s)} \rightarrow Cu^{+2} + 2e$ 

"Cathode"

"Anode"

## Description:

- 1.  $Cu_{(s)}$  will spontaneously oxide to a small extent to start the process.
- 2. e- left behind by the oxidation of Cu (s) travel though wire as an electrical current to the cathode, where they are picked up by the Ag<sup>+</sup> ions.
- 3. The Ag<sup>+</sup> ions are then reduced to Ag (s), which is deposited on the cathode.
- 4. In order for e- to continue flowing, the cell must be overall electrically neutral.
- 5. To prevent a build up of Cu<sup>+2</sup> is right half cell and NO<sub>3</sub> in left half cell, the salt bridge allows them to "escape"

- 6. Anions (NO<sub>3</sub><sup>-</sup>) are attracted to the anode cause after the e- leave and Cu<sup>+2</sup> is made, there is an excess of positive charge.
- 7. Cations (Ag<sup>+</sup>) are attracted to the cathode, cause the arrival of electrons and depletion of surrounding Ag<sup>+</sup> produce an excess of negative change.
- b) Example Describe an electrochemical cell that could take advantage of the following reaction. Sketch cell and label.

$$Cu^{+2} + Zn_{(s)} \rightarrow Cu_{(s)} + Zn^{+2}$$



Reduction:  $Cu^{+2} + 2e^{-} \rightarrow Cu_{(8)}$ 

Oxidation:  $Zn_{(s)} \rightarrow Zn^{+2} + 2e$ 

"Cathode"

"Anode"

### Procedure:

- 1. One half cell must contain a Cu electrode dipped into a solution containing Cu<sup>+2</sup>
- 2. One half cell must contain a Zn electrode dipped into a solution containing Zn<sup>+2</sup>
- 3. Since Zn (s) is being oxidized, it is at anode
- 4. Since Cu<sup>+2</sup> is being reduced is it the cathode reaction
- 5. Anions move toward the anode, Cations move toward the cathode
- 6. e- travel from anode to the cathode

#### c) Example Describe an electrochemical cell that could take advantage of the following reaction. Sketch cell and label.

$$Fe^{+2} + Mg_{(s)} \rightarrow Fe_{(s)} + Mg^{+2}$$



Reduction:  

$$Fe^{+2} + 2e^{-} \rightarrow Fe_{(s)}$$

"Cathode"

Oxidation:  $Mg_{(s)} \rightarrow Mg^{+2} + 2e$ 

"Anode"

## Procedure:

- 1. One half cell must contain a Fe electrode dipped into a solution containing  $\mathrm{Fe}^{+2}$
- 2. One half cell must contain a Mg electrode dipped into a solution containing Mg<sup>+2</sup>
- 3. Since Mg (s) is being oxidized, it is at anode
- 4. Since Fe<sup>+2</sup> is being reduced is it the cathode reaction
- 5. Anions move toward the anode, Cations move toward the cathode
- 6. e- travel from anode to the cathode

Do Questions: #34-35 page 217