6. Electrochemical Cell - Quantitative (\ \ \ \)

Voltage along the wire in an electrochemical cell depends on the half reactions.

a) Cell Potential

- i) cell potential (E cell) is the maximum voltage of an electrochemical cell
- ii) standard cell potential (E°cell) is the maximum voltage when:

concentration of all ions is 1.0 M, temperature is 25°C and, pressure is 1 atm (101.325 kPa) "standard state"

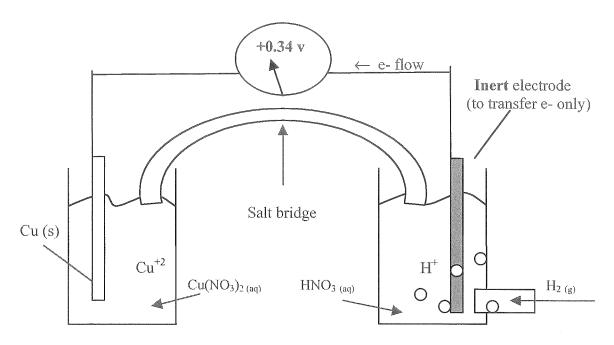
- iii) purpose of E°_{cell} is to:
 - ① calculate voltage of a particular electrochemical cell
 - ② predict whether a particular redox reaction will occur (spontaneous)
- iv) E°_{cell} is calculated from the difference in voltage between the half reactions

b) Table of "Standard Reduction Potentials"

i.e. "Voltages for Half Reactions written as a Reduction"

i) Hydrogen half reaction is set at an arbitrary voltage of $0.00~\mathrm{V}$

$$H_{2 (g)} \rightarrow 2H^{+} + 2 e^{-}$$
 $E^{\circ} = 0.00 \text{ V}$


ii) Example:
$$\mathbb{Z}n^{+2} + 2e^{-} \rightarrow \mathbb{Z}n_{(s)}$$
 $\mathbb{E}^{\circ} = -0.76 \text{ V}$

This reduction produces 0.76 V less than the hydrogen half reaction.

iii) Example:
$$Cu^{+2} + 2e^{-} \rightarrow Cu_{(s)}$$
 $E^{\circ} = +0.34 \text{ V}$

This reduction produces $0.34~\mathrm{V}$ more than the hydrogen half reaction.

iv) Other half reaction voltages are relative compared to the hydrogen half cell.

Reduction:
$$Cu^{+2} + 2 e^{-} \rightarrow Cu_{(s)}$$

"Cathode"

Oxidation:

$$H_{2 (g)} \rightarrow 2H^+ + 2 e^-$$

"Anode"

v) Each reduction half reaction can be written as an oxidation.

$$Cu^{+2} + 2 e^{-} \rightarrow Cu_{(s)}$$
 $E^{\circ} = + 0.34 \text{ V}$

$$E^{\circ} = +0.34 \text{ V}$$

$$Cu_{(s)} \rightarrow Cu^{+2} + 2e$$

$$Cu_{(s)} \rightarrow Cu^{+2} + 2e$$
 $E^{\circ} = -0.34 \text{ V}$ - reduction rxn in reverse!

c) Calculating the E°cell for an Electrochemical Cell

i) Example:
$$Cu^{+2} + Zn_{(s)} \rightarrow Cu_{(s)} + Zn^{+2}$$

Cathode reaction:
$$Cu^{+2} + 2e^{-} \rightarrow Cu_{(s)}$$
 $E^{\circ} = +0.34 \text{ V}$

Anode reaction:
$$Zn_{(s)} \rightarrow Zn^{+2} + 2e$$
 $E^{\circ} = +0.76 \text{ V}$ (reverse rxn = reverse sign!!) E° cell = +1.10 V

ii) Example:
$$Fe^{+2} + Mg_{(s)} \rightarrow Fe_{(s)} + Mg^{+2}$$

Cathode reaction: $Fe^{+2} + 2e^{-} \rightarrow Fe_{(s)}$ $E^{\circ} = -0.45 \text{ V}$

Anode reaction: $Mg_{(s)} \rightarrow Mg^{+2} + 2e$ - $E^{\circ} = +2.37 \text{ V}$ (reverse rxn = reverse sign!!) E° cell = +1.92 V

iii) Example:
$$2Ag^+ + Cu_{(s)} \rightarrow 2Ag_{(s)} + Cu^{+2}$$

Cathode reaction: $2Ag^+ + 2e^- \rightarrow 2Ag_{(s)}$ $E^\circ = +0.80 \text{ V}$ (do not multiple E° by 2)

Anode reaction: $Cu_{(s)} \rightarrow Cu^{+2} + 2e$ - $E^{\circ} = -0.34 \text{ V}$ (reverse rxn = reverse sign!!) $E^{\circ} \text{cell} = +0.46 \text{ V}$

iv) Example:
$$2MnO_4^- + 4H_2O + 3Ni_{(s)} \rightarrow 2MnO_{2(s)} + 8OH^- + 3Ni^{+2}$$

Cathode reaction: 2($MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_{2(s)} + 4OH^-$) $E^\circ = +0.60 \text{ V}$

Anode reaction: 3(Ni_(s) \rightarrow Ni⁺² + 2e-) $E^{\circ} = +0.26 \text{ V}$ (reverse rxn = reverse sign!!) E° cell = +0.86 V

Do Questions: #36-38, 40-41 page 224-225

Note: Hebden uses formula E° cell = E° red - E° ox

Do NOT reverse sign of oxidation reaction if using this formula.