6. Equilibrium Dissociation for Water, Acids and Bases

a) What is Dissociation of Water?

i) Liquid water is in equilibrium with its aqueous ions:

$$2H_2O_{(1)} + 59kJ$$
 $+ OH_{(aq)}$

ii)
$$K_w = [H_3O^+][OH^-] = 1.00 \times 10^{-14}$$

iii) Water is neutral so: $[H_3O^+] = [OH^-]$

b) What Does K_w Tell Us Immediately?

- i) There will <u>always</u> be a wee bit of **acid** in an aqueous solution. Even in a strong base! Since the value is so small, if a strong base is present, we can ignore the value!
- ii) What is [H₃O⁺] in water?

$$K_w = [H_3O^+][OH^-] = 1.00 \times 10^{-14}$$

Since $[H_3O^+] = [OH^-].....[x][x] = 1.00 \times 10^{-14}$ $x = 1.00 \times 10^{-7} M$

- iii)There will <u>always</u> be a wee bit of **base** in an aqueous solution. Even in a strong acid! Since the value is so small, if a strong acid is present, we can ignore the value!
- iv) What is [OH] in water?

$$K_w = [H_3O^+][OH^-] = 1.00 \times 10^{-14}$$

Since $[H_3O^+] = [OH^-].....[x][x] = 1.00 \times 10^{-14}$ $x = 1.00 \times 10^{-7} M$

c) Use of K_w Expression

- i) We can find the [OH] if we know the [H₃O⁺] and vice versa!
- ii) Example: What is [H₃O⁺] and [OH] in 0.015M HCl?
- ① HCl is a strong acid, so is 100% dissociated
- ② Therefore $[HCI] = [H_3O^+] = 0.015M$

$$(3) [OH^{-}] = \underline{Kw} . = \underline{1.00 \times 10^{-14}} = 6.7 \times 10^{-13} M$$

- iii) Example: What is $[H_3O^+]$ and $[OH^-]$ in 1.5 x 10^{-6} M NaOH?
- ① NaOH is a metal hydroxide, so is a strong base, so is 100% dissociated
- ② Therefore [NaOH] = [OH] = $1.5 \times 10^{-6} M$

$$(3) [H3O+] = Kw = 1.00 x 10-14 = 6.7 x 10-9 M$$

d) Acid Dissociation

i) Recall, only weak acids will form an equilibrium.

$$H_2S_{(aq)} + H_2O_{(1)}$$
 HS $^{+}_{(aq)} + H_3O^{+}_{(aq)}$

ii)
$$K_a = [HS][H_3O^+] = 9.1 \times 10^{-8}$$

 $[H_2S]$

- iii) Ka is called the Acid Ionization Constant
- iv) The greater the value of K_a, the stronger the acid (see Table of Relative Strengths of Acids p.334)
- v) Example: Write the reaction and the K_a expression of H_2SO_3 with water

$$H_2SO_{3(aq)} + H_2O_{(l)}$$
 $HSO_{3(aq)} + H_3O_{(aq)}^+$
 $K_a = [HSO_3][H_3O^+] = 1.5 \times 10^{-2}$
 $[H_2SO_3]$

d) Base Dissociation

i) Recall, only weak bases will form an equilibrium.

$$CO_3^{-2}_{(aq)} + H_2O_{(l)}$$
 HCO₃ $^{-}_{(aq)} + OH_{(aq)}^{-}$

ii)
$$K_b = [HCO_3][OH] = 1.8 \times 10^{-4}$$
 $[CO_3^{-2}]$

- iii) K_b is called the Base Ionization Constant
- iv) The greater the value of K_b, the stronger the base.

e) Finding K_b

i) Theory

There is a relationship between K_a and K_b

$$\bigcirc$$
 Acid dissociation: $H_2S_{(aq)} + H_2O_{(l)}$ \longrightarrow $HS^-_{(aq)} + H_3O^+_{(aq)}$

$$K_a = [HS][H_3O^+] = 9.1 \times 10^{-8}$$

 $[H_2S]$

② Base dissociation:
$$HS^{-}(aq) + H_2O_{(l)}$$
 $H_2S_{(aq)} + OH^{-}_{(aq)}$

$$K_b = [H_2S][OH^-] = 1.1 \times 10^{-7}$$
[HS⁻]

$$\Im K_a \times K_b = \underbrace{[HS^-][H_3O^+]}_{[H_2S]} \times \underbrace{[H_2S][OH^-]}_{[HS^-]} = [H_3O^+][OH^-] = K_w$$

- ii) Procedure:
- ①Look on Base side of Table of Relative Strengths to find your base species
- ②Find the Ka for the reverse reaction.
- iii) Example: Find the K_b for SO₄⁻²

On the table we find: $HSO_4^ H^+ + SO_4^{-2}$ $K_a = 1.2 \times 10^{-2}$

$$K_b = K_w / K_a = 1.00 \times 10^{-14} / 1.2 \times 10^{-2} = 8.3 \times 10^{-13}$$

Do questions: #29-30 page 127; #31-34 page 128; #35-37 page 130