

i) "Eveready" (Zinc-carbon battery)

- carbon cathode and zinc casing acts as anode
- NH₄Cl / MnO₂ paste inside
- carbon cathode is inert: a place for $Mn^{+4} + e \rightarrow Mn^{+2}$ to occur
- zinc anode: $Zn \rightarrow Zn^{+2} + 2e$
- why do batteries die?
- E°cell is initial cell voltage
- Overtime, the redox reaction reaches equilibrium.
- Equilibrium is when no more reactant is left or electrode gets coated with by-product.
- In a battery, the battery dies when you run out of zinc or electrode get covered with Zn(NH₄)₄⁺²
- No zinc? No electrode access? E°cell = 0 V

ii) "Duracell or Energizer" (Alkaline Battery)

- the same set up as the zinc-carbon battery
- except: NH₄Cl is replaced by KOH base (alkaline!!)
- lasts longer cause no Zn(NH₄)₄⁺² build up at electrodes.

iii) "Car Battery" (Lead-Acid Battery)

- anode is solid lead: $Pb_{(s)} \rightarrow Pb^{+2} + 2e$ -
- cathode is PbO_2 : $Pb^{+4} + 2e \rightarrow Pb^{+2}$
- both sit in H₂SO₄ electrolyte
- why can car batteries be recharged?
- the battery dies cause of PbSO₄ buildup on the electrodes
- "boosting" the car, sends electricity through the battery reversing the reaction!
- $PbSO_4 + H_2O \rightarrow Pb_{(s)} + PbO_{2(s)} + 2H_2SO_4$

NOTE: above is a "*Disproportionation*" reaction. (the same reactant is both ox. and red.) The Pb^{+2} oxidizes to Pb^{+4} and the Pb^{+2} reduces to $Pb_{(s)}$

- why do car batteries eventually die?
- PbSO₄ can fall off the electrodes, so it can't be made back into Pb and PbO₂

iv) Fuel Cells -see page 233 Hebden

c) Corrosion (V, A)

i) What is Corrosion?

- Oxidation of metals
- "Rusting" is oxidation of iron

ii) How Does "Rusting" Occur? (See page 233-234 Hebden)

① The "electrochemical cell" is a drop of water:

Anode is the center of the drop. Cathode is the edge of the drop. $Fe_{(s)} \rightarrow Fe^{+2} + 2e$

 $1/_{2}O_{2} + H_{2}O + 2e^{-} \rightarrow 2OH^{-}$

- ② The Fe⁺² reacts with the OH to make Fe(OH)_{2 (s)}

iii) How Can we Stop Corrosion of Iron?

- ① Protect the metal surface:
 - paint
 - "protective oxide" ... coat iron with a thin layer of magnesium or tin ...the Mg or Sn will oxidize, but cover the iron! ... "stainless steel" is steel with a thin SnO coat

2 Cathodic Protection

- attach a sacrificial anode of zinc (or a substance more easily oxidized than iron)
- the zinc will oxidize preferentially, leaving the iron alone.
- think what we learned from the section on "Multiple Electrodes" above!

3 Shift Reactions in Reverse

- add OH or remove O₂ from the situation
- the cathode reaction above will shift to the left, decreasing oxidation!

Read through section V.11 and V.12

Do Questions: #49 page 229; #52-53 page 231; #56 page 233; #57-63 page 234 & 236